شناسایی قطعات الکترونیکی

 

دياك: دياك عنصري دوپايه است و مشابه ترانزيستوري است كه بيس ندارد. از هر دو طرف (باياس مستقيم و معكوس ) جریان را عبور مي دهد و روشن شدن آن بستگي به ولتاژ آستانه تعريف شده ( يا شكست ) دارد.

دیاک درتوليد پالس بكار برده مي شود.در واقع دیاک و تریستور و ترایاک هم خانواده اند و همگی در حالت کلی مانند دیود خاصیت هدایت کنندگی دارند اما با این تفاوت که تریستور و ترایاک عناصر سه پایه ای هستند که تکامل یافته اند و علاوه بر اینکه از هر دو طرف جریان را عبور میدهند دارای پایه گیت برای کنترل زمان عبور جریان نیز میباشند.

 

ترميستور:

 یکی از مشخصه های مورد نظر در مورد مقاومتهای معمولی این است که در محدوده وسیعی از تغییرات دمای محیطی ٬ مقاومت آنها تغیر نکند. اما ترمیستورها (یعنی مقاومتهای حرارتی) آگاهانه بصورتی ساخته شده اند که مشخصه هایشان با تغییر دمای محیط تغییر کند.به این ترتیب آنها را میتوان به عنوان سنسور ٬ و یا قطعات جبران کننده تغییرات حرارتی مورد استفاده قرار داد.

دو نوع ترمیستور اصلی وجود دارد : با ضریب حرارتی منفی (N.T.C) و ضریب حرارتی مثبت ( P.T.C) . در دمای 25 درجه سانتیگراد ٬ مقاومت نمونه های معمول N.T.C در حدود چند صد اهم (یا چند کیلو اهم) میباشد که با افزایش دما تا 100 درجه سانتیگراد ٬ مقاوت آن تا حد دهها اهم کاهش می یابد .اما مقاومت P.T.C در محدوده صفر تا 75 درجه سانتیگراد تقریبا ثابت است(معمولا در حدود 100 اهم).در درجه حرارت بالاتر از این حد(معمولا 120 _ 80 درجه سانتیگراد)مقاومت آن به سرعت بالا میرود(حد اکثر تا 10 کیلو اهم).

 

تريستور:

 تریستورها(که به آنها یکسوسازهایی با کنترل سیلیکونی نیز میگویند) 3 پایه داشته ٬ و میتوان آنها را برای قطع و وصل و یا کنترل توان سیگنالهای AC نیز مورد استفاده قرار داد.ترمیستور نیز مانند دیود ((آند)) و ((کاتد)) دارد. اما علاوه بر آنها پایه سومی به نام ((گیت)) نیز وجود دارد ٬ که با اعمال پالس جریانی کوتاه مدت از آن طریق ٬ میتوان تریستور را تحریک کرد.

بسته به شرایط موجود این قطعه با سرعت زیادی از حالت هدایت به حالت قطع میرود.در حالت ((قطع)) فقط جریان نشتی بسیار اندکی از تریستور عبور میکند که میتوان آن را نادیده گرفت(مقاومت بسیار بزرگی از خود نشان میدهد) ٬ اما مقاومت آن در حالت (( روشن)) بسیار اندک است.وقتی تریستور روشن شود در همان حالت باقی میماند ( یعنی در واقع در همان حالت قفل میشود) و تا زمانی که جریان مستقیم آن قطع نشده باشد ٬ در این حالت برقرار خواهد ماند.

در مدارهای DC تا زمانی که ولتاژ تغذیه قطع نشود ٬ تریستور همچنان روشن خواهد ماند اما در مدارهای AC با هر بار معکوس شدن قطبیت سیگنال AC ترمیستور به صورت خودکار خاموش خواهد شد.

 

آي سي رگولاتور يا تثبيت كننده ولتاژ:

 

به منظور تثبت (ثابت نگه داشتن) ولتاژ مورد نظر در نقاط مختلف مدار از آي سي هاي رگولاتور استفاده مي كنيم.

تثبت به اين منظور انجام مي شود كه ما در مداري نياز به يك لتاژ ثابت، مثلا 5 ولت dc دايم ولي نوساناتي در ولتاژ ورودي به مدار ما وجود دارد كه بر عملكرد مدار تاثير مي گذارد از اين رو از آي سي رگولاتور به منظور تثبيت كننده ولتاژ استفاده مي كنيم.

آي سي هاي رگولاتور دو نوع مثبت و منفي هستند و با پيش شمارهاي 78 براي نوع مثبت و 79 براي نوع منفي شناخته مي شوند دو رقم بعد از اين عدد ها نشان دهنده ولتاژ آي سي مي باشد.

مثلا: 7805 يعني آي سي رگولاتور 5 ولت مثبت

مثلا: 7805 يعني آي سي رگولاتور 5 ولت مثبت و يا: 7905 يعني آي سي رگولاتور 5 ولت منفي

آي سي رگولاتور داراي سه پايه است . پايه وسط آن مشترك است و به زمين مدار يا منفي متصل است . پايه اول ورودي جريان و پايه سوم خروجي تثبيت شده جريان است.

نكته بسيار مهم اين موضوع است كه ولتاژ  ورودي به آي سي رگولاتور بايد بين 3 تا 8 ولت بيشتر از ولتاژ تثبت خروجي باشد به عنوان مثال به آي سي 7805 بايد بين 8 تا 13 ولت جريان بدهيم تا 5 ولت تثبت شده در خروجي به ما بدهد. جريان دهي آي سي هاي رگولاتور 1 آمپر است.

برخي از رنج هاي متداول آي سي هاي رگولاتور:

تيپ مثب:7805 – 7806 – 7808 – 7809 – 7810 – 7812 – 7815 – 7818 – 7824 -…

تيپ منفي: 7905 – 7906 – 7908 – 7912 – 7915 – 7924 - …



 

ديود زنر: Zener

ديود زنر در مدارات الكترونيك در باياس معكوس يا منفي بسته مي شود. ديود زنر تثبت كننده ولتاژ در باياس معكوس است. اين ديودها در مدارات الكترونيك به منظور تثبيت ولتاژ در قسمتهاي مختلف مدار به كار مي رود.

به عنوان مثال اگر در يك مدار الكترونيكي نياز به ولتاژ هاي 6/5 يا 2/8 يا 3/3 ولت داشته باشيم و منبع تغذيه ما 12 ولت باشد مي توانيم از اين نوع ديود استفاده كنيم.

اين نوع ديود ها بر حسب ولتاژ شناخته و تهيه مي شوند. (البته طرز قرار گرفتن آنها در مدارات نياز به آشنايي با طراحي مدارات الكترونيك دارد) برخي از رنج هاي متدال ديودهاي زنر عبارتند از:

2 – 2.2 – 2.7 – 3.3 – 3.9 – 4.7 – 5.1 – 6.8 – 8.2 – 10 – 12 – 14 – 16 – 18 – 24 – 26 – 36 - … - 90 – 110 ولت

برخي از توان هاي ديود زنر:

1.8 – 1.4 – 1.2 – 1 – 2 – 3 – 5 – 10 – 20 - …75 وات

 

تراياك:

ترایاک نمونه پیشرفته تر تریستور است ٬ که هدایت دو طرفه ولتاژ از مشخصه های آن به شمار می آید. این قطعه نیز 3 پایه دارد که ترمینال شماره ی یک ولتاژ اصلی یا MT1 و ترمینال شماره دو ولتاژ اصلی یا MT2 و «گیت» نامیده میشوند. ولتاژ اعمال شده به MT2 نسبت به ولتاژ MT1 چه مثبت باشد و چه منفی میتوان پالسهای تحریک مثبت و منفی را به گیت اعمال کرد(نسبت به MT1).بنابر این ترایاک برای کنترل تمام موج سیگنال AC مناسب بوده و آن را مانند تریستور میتوان مورد استفاده قرار داد.

روشن و خاموش شدن تریستور و ترایاک با سرعت بسیار زیادی صورت میپذیرد در نتیجه پالسهای گذرای بسیار کوتاهی ایجاد میشود ٬ که ممکن است مسافت بسیار زیادی را در طول سیم طی کنند.برای جلوگیری از ایجاد چنین نویزهایی ٬ معمولا استفاده از نوعی فیلتر LC ضروری خواهد بود.



آموزش تست مقاومت

مقاومت انواع مختلفی دارد . فعلاً آموزش تست یک مقاومت ثابت را توضیح می دهم .

جهت تست از دونوع مولتی متر می توانیم استفاده کنیم :
تست با مولتی متر دیجیتال :
در این روش در حالیکه مولتی متر را در مد تست مقاومت می گذاریم دو ترمینال مولتی متر را به ابتدا به هم اتصال می دهیم تا سیمهای ترمینال وخطای مولتی متر را کنترل نمائیم سپس دو پایه ترمینال را به دوسر مقاومت وصل نموده مقدار اهم نشان داده شده را قرائت می کنیم در صورتیکه این مقدار با اندازه مقاومت که از روی رمز رنگها ویا از روی نوشته روی مقاومت قابل تشخیص است مقایسه می کنیم اگر این دو عدد بهم نزدیک بودند باتوجه به خطای مقاومت می گوئیم که مقاومت سالم است .
تست با مولتی متر آنالوگ ( عقربه ای ) :
در این روش نیز باید مولتی متر را در رنج های تست کننده مقاومت بگذاریم البته تعیین این رنج بستگی به مقدار مقاومت ما دارد اگر مقاومت ما کوچکتر از 100 ، اهم است مولتی متر را در رنج
Rx1 و اگر از 100، اهم بزرگتر و کوچکتر از 10 کیلو اهم است در رنج Rx100 و در صورتیکه بزرگتر از 10 کیلو و کوچکتر از 100 کیلو در رنج Rx1k و در صورتیکه بزرگتر از 100 کیلو باشد مولتی متر را در رنج Rx10k قرار داده و مقاومت را تست می کنیم در این مرحله نیز باید میزان اهم قرائت شده با اندازه واقعی مقاومت خیلی نزدیک باشد وفقط در حد خطای آن تلرانس قابل قبول است .

تست مقاومت های متغیر

تست مقاومتهای متغیر :
الف : پتانسیو متر :
برای تست پتانسیومتر به کمک مولتی متر آنالوگ : ابتدا رنج مناسب انتخاب و سپس پایه وسط پتانسیومتر را نسبت به دوپایه دیگر اهم چک می کنیم طبیعی است که سر لغزنده وسط در هر کجا باشد عددی قرائت می شود ونیز می دانیم مجموع هردوعددی که از جمع اعداد قرائت شده هردو پایه طرفین بدست می آید برابر مقدار اهم کل پتانسیومتر می باشد .

حال برای اطمینان از عمل کرد پتانسیومتر در حین تغییر اهم نیز می توانیم یک از پایه های کناری را نسبت به پایه وسط در حالی اهم چک نمائیم که پتانسیومتر را می چرخانیم در هر حالت باید تغییرات اهم را مشاهده کنیم اگر در نقطه ای تغییرات اهم ناجوری ( کم و زیاد شدن غیر طبیعی )
مشاهده شود پتانسیومتر مشکل دارد و خلاصه لازم است که تغییرات یکنواخت و بدون قطع شدن باشد .
تست ولوم : می دانیم که ولوم نیز نوعی مقاومت متغیر می باشد پس مانند پتانسیو متر تست می شود .
تست مقاومتهای متغیر ویژه یا مخصوص :
این نوع مقاومتها با تغییرات فیزیکی عمل می کنند .
تست مقاومت مخصوص Ldr :
می دانیم در مقابل تغییرات نور پاسخ می دهد . پس در حالیکه دو پایه آنرا به ترمینالهای مولتیمتر وصل نموده ایم در رنج Rx1k بهتر است در جلو نور مقاومت آنرا قرائت نموده سپس با ایجاد سایه تغییر مقاومت آن را مشاهده کنیم .با پاسخ در مقابل تغغییرات نور سالم بودن آن مشخص می شود .
تست مقاومت ویژه یا مخصوص Vdr :
می دانیم که Vdr نوعی مقاومت ویژه یا مخصوص است که با افزایش ولتاژ اهم آن کاهش می یابد پس معمولاً در جایی که قصد ثابت کردن ولتاژ را دارند مانند زنر استفاده می شود .
وبرای تست بدلیل ولتاژ بالای آن با اهمتر قابل تست نیست ودر مدار ودانستن مقدار ولتاژ محل تست می شود .
تست مقاومت Ptc :
می دانیم Ptc نوعی مقاومت است که با افزایش حرارت اهم آن افزایش و با کاهش حرارت اهم آن کاهش می یابد . پس اگر در حالیکه یایه های آن را به وسیله ترمینالهای مولتی متر گرفته ایم با وسیله ای حرارت زا مانند هویه ، سشوار ، ..... حرارت دهیم مقدار اهم آن زیاد شده وعلامت سالم بودن آن است . و عکس این عمل نیز درست است .
تست مقاومت ویژه Ntc :
عکس Ptc عمل می کند .
تست مقاومت Mdr :
این مقاومت در حوزه مغناطیس اهمش بالا می رود و می توان در هنگام تست با آهنربا تغییرات اهمش را ملاحظه کرد . نوع پیشرفته آن به نام Ic هال مشهور است . که در ضبط صوت های قدیمی سیلور دیده ایم .

تست انواع خازن توسط مولتی متر

تست انواع خازن :
تست خازنهای کمتر از10 نانو فاراد بسادگی توسط مولتی متر انجام نمی شود و فقط با خازن سنج تست می شود در صورتیکه خازن سنج ندارید روشهای زیادی برای تست این نوع خازن می توان به کار برد .
اینجانب برای تست این نوع خازنها پیشنهادی به همکاران می دهم اگر حوصله نمودند تست کنند جالب است .
برای تست این نوع خازن سه دور سیم روپوش دار معمولی را به دور هسته ترانس Hv که در دم دست داریم و تلویزیون در حال دریافت یک برنامه می باشد پیچیده و یک سر سیم را شاسی نموده خازن را به سر بعدی متصل و بایک مقاومت 10 کیلو اهمی شاسی کنید مطابق شکل :
در این حالت تلویزیون را روشن کنید طبیعی است که Hv در سیم پیچ القا ء حدود 25 الی 30 ولت پیک تو پیک خواهد داشت که با مولتیمترها نزدیک 6ولت Ac می شود . حال ولتاژ دو سر خازن را اندازه گیری نمائید اینجانب در آزمایشی که انجام دادم خازن 1n حدود 5vac خازن 820pf حدود 4vac ولت را نشان داد می توان مقاومت کمتری را نیز انتخاب و رنج وسیعی از خازنها را تست نمود از این روش می توان برای تست انواع خازنهای پلاستیکی استفاده نمود . و نتایج مختلفی برای انواع خازنها تجربه نمود .
در این تست اگر دوسر خازن ولتاژی نداشته باشد به معنی شورت خازن واگر تقسیم ولتاژی مابین مقاومت و خازن صورت نگیرد به معنی قطع خازن می باشد . لازم به توضیح است که باید مقدار خازن و مقاومت را درست انتخاب نمود .

و حال تست خازنهای بالاتر از 10nf الی 1میکرو فاراد : برای تست این نوع خازن می توان مولتی متر را روی رنج Rx10 قرار داده و می دانیم لحظه وصل ترمینالهای مولتی متر اگر خازن خالی باشد توسط پیل 9v داخل مولتیمتر شارژ شده و در حان شارژ عقربه مولتیمتر اهم مدار را در لحظه عبور جریان نشان می دهد مقدار ماکزیمم حرکت عقربه
را برای همیشه بخاطر بسپارید تقریباً متاسب با ظرفیت خازن عقربه منحرف می شود .
اگر در این روش بعد از شارژ کامل خازن ، اگر خازن نشتی نداشته باشد خازن سالم است و اهم قرائت شده بی نهایت است . و در صورتیکه خازن نشت داشته باشد عقربه مقدار اهمی را نشان می دهد که گویای میزان نشتی خازن است .
ونیز اگر خازن قطع باشد هیچگونه عکس العمل مشاهده نمی شود و عقربه هیچ انحرافی نخواهد داشت .

تست خازنهای 1میکرو فاراد الی 10 میکرو فاراد :
قبل از نتیجه گیری باید به عرض برسانم که چون این خازنها الکترولیتی می باشند بنا براین ممکن است تغییر ظرفیت بدهند لذا این آزمایش فقط قطع ویا شورت خازن را نشان می دهد بنا براین در بعضی مراحل تغییر ظرفیت و وجود نشتی در خازن باید خازن توسط خازن سنج تست شود ولی این دلیل برای یک تعمیر کار و یا یک الکترونیک کار سبب نمی شود که این روش را یاد نگیرد .
برای این تست مولتی متر را در رنج Rx1k قرار داده و سپس شارژ و دشارژ خازن را باتوجه به قطبین باطری داخل مولتی متر( سیم مشکی مثبت و سیم قرمز منفی باطری است ) انجام می دهیم .
تست خازنهای بالاتر از 10 میکرو فاراد :
برای تست این نوع خازن باید مولتی متر را در رنج Rx100 قرار دهیم :
شارژ و دشارژ خازن را ملاحظه نموده توجه به قطبین الزامی است و نشتی در حد جزئی قابل قبول است .
بنا براین بعد از شارژ عقربه اهم زیادی را نشان می دهد . اگر خازن موجب حرکت عقربه نگردد یعنی قطع و در صورتیکه صفر باشد یعنی خازن شورت است و اگر اهم کمی نیز قرائت شود به معنی خراب بودن خازن است .

تست انواع دیود

تست انواع دیود توسط مولتی متر :

در ابتدا ی توضیحات باید به عرض برسانم که تست قطعات در مدار و تست قطعات در خارج ازمدار باهم متفاوت است بنا براین همیشه این نکته را در نظر داشته باشیم .

تست دیود معمولی : دیودهای معمولی را بشناسیم این دیودها از جنس سیلسیوم بوده برای کاربردهای متفاوت قابلیت عبور جریانهای مختلفی را دارند ساده ترین نوع آن دیود 1N4148 می باشد که ظاهری کوچک مانند درودهای زنر کم وات دارد و پوسته ی شیشه ای دارد . ویا دیودهای 1N4001 و که در یکسو یازی فرکانس پائین بیسترین کاربرد را دارند مانند کار برد در آدابتورها .

بعد از شناخت سطحی با دیود معمولی تست آن را توضیح می دهم .

ابتدا قطعه را خارج از مدار تست می کنیم : در صورتیکه مولتی متر ما هیوکی 3007 باشد !

ترمینالهای مولتی متر را در گرایش مستقیم جهت تست عبور جریان از دیود به پایه های دیود اتصال دهید در این حالت باید ترمینال قرمز به کاتد و ترمینال مشکی به آند دیود متصل باشد می دانیم کاتد توسط خط مدور روی بدنه دیود مشخص است در این حالت از دیود جریانی که توسط پیل داخل مولتیمتر در آن جاری می شود عبور می کند ومقاومت دیود را برای این جریان می توانیم روی صفحه مولتی متر قرائت کنیم معمولاً حدود 20 الی 30 اهم است . و در این حالت حتماً مولتی متر باید روی RX1 باشد زیرا می خواهیم به حداکثر مقدار مقاومت ممکن دیود توجه داشته باشیم ودر این حالت این مقدار بایستی از 30 اهم بیشتر نشود . وگرنه دیود در گرایش مستقیم نمی تواند جریان را به خوبی از خود عبور دهد .

تست در حالت معکوس : در این حالت ترمینال قرمز مولتی متر را به آند دیود وترمینال مشکی آن را به کاتد اتصال می دهیم اما چون باید مولتی متر را مُد RX10K بگذاریم باید توجه داشته باشیم که بادست پایه های مولتیمتر لمس نشود چون مولتی متر را در حالت سنجش مقاومت بالا گذاشته ایم زیرا می خواهیم کوچکترین نشتی ممکن دیود را بسنجیم و لابد دراین حالت هیچ گونه نشتی قابل قبول نیست و باید عقربه اصلاً انحرافی نشان ندهد .

تست دیود زنر : مولتی متر در گرایش مستقیم روی RX1 ومانند دیود معمولی باید 20 الی 30 اهم را نشان دهد واصطلاحاً گویند مولتی متر در گرایش مستقیم راه می دهد .
در گرایش معکوس مولتی متر باید روی مُد RX1K بوده و هیچ گونه نشتی قابل قبول نیست .
اما جهت تست کامل دیود زنر باید دیود را توسط ولتاژ بالا تر از ولتاژ شکست و مانند شکل زیر درمدار زیر قرار داده و ولتاژ شکست آن را اندازه گیری نمود . تا از درستی ولتاژ شکست دیود مطمئن شویم .

تست ديود 2

تست ديود نوري ( Led )

ابتدا توضيحاتي راجع به بستن مدارات Led را در خدمت همكاران تقديم مي كنم .

اولين مطلب مهمي كه به نظرم مي رسد و بارها اين موضوع را در مدارات الكترونيك شاهد بوده ام قرار دادن ديودهاي Led در مدارات الكترونيكي بدون مقاومت كنترل جريان واين مسئله باعث خواهد شد كه ديودled طول عمر كمتر ونيز صدمه رسيدن به مدارات مي گردد .

چون Led يك ديود مي باشد و بنا براين بايد به عنوان ديود در مدارات مورد استفاده قرار گيرد . و هيچ وقت ديود را در مدار به عنوان مصرف كننده در نظر نداشته باشيد . ونيز مي دانيم هيچ مداري بسته بدون مصرف كننده نيست .

نتيجه عرايضم اين است كه در يك مداربسته كه از Led استفاده مي كنيم حتماً مقاومت كنترل جريان را با حساب وكتاب درستي در نظر داشته باشيم . مصرف يك Led از 10 الي 20 ميلي آمپر است وبراي استفاده دائمي از يك Led در مدار مقاومت كنترل جريان آن را براساس اين مقدار مصرف محاسبه كنيم .
ونيز مي دانيم ولتاژ مورد نياز يك Led بستگي به رنگ نور آن از 7/1 الي 2/2 ولت متفاوت است البته خيلي راحت اين ولتاژ بدست مي آيد كافي است وقتي Led را در مدار قرار مي دهيم ( باسري نمودن مقاومت كنترل جريان آن ) مقدار ولتاژ دوسر Led را اندازه گيري نمائيم . تا ولتاژ مورد نياز Led بدست آيد .
از دو مطلب فوق نتيجه مي گيريم كه اولاً با يك پيل 5/1 ولتي انتظار روشن شدن Led را نداشته باشيم چون هر Led با يك ولتاژ مخصوص خود روشن مي شود .

ثانياً اگر مي خواهيم گرايش مستقيم يك Led را تست كنيم بايد ولتاژ اعمالي به Led بيشتر از 5/1 باشد و نيز مي دانيم كه مولتي مترها اكثراً مانند مولتي متر هيوكي 3007 براي تست در حالت اهمي از باطري 5/1 ولتي براي مُدهاي Rx1 و Rx100 و Rx1k استفاده مي كنند و اين ولتاژ نمي تواند يك ديود Led را روشن كند چون همچنانكه دربالاعنوان شد حداقل 7/1 ولت جهت شكستن سد پتانسيل Led لازم است .
بنا براين جهت تست در حالت حتي گرايش مستقيم يك Led بايد از مُد Rx10k كه تغذيه آن معمولاً توسط يك پيل 9 ولتي انجام مي گيرد استفاده نمود .
نتيجه نهايي :
تست Led : گرايش مستقيم : مولتي متر در مُد Rx10k و مولتيمتر بايد راه بدهد .
گرايش معكوس

ست ديود 2

تست ديود نوري ( Led )

ابتدا توضيحاتي راجع به بستن مدارات Led را در خدمت همكاران تقديم مي كنم .

اولين مطلب مهمي كه به نظرم مي رسد و بارها اين موضوع را در مدارات الكترونيك شاهد بوده ام قرار دادن ديودهاي Led در مدارات الكترونيكي بدون مقاومت كنترل جريان واين مسئله باعث خواهد شد كه ديودled طول عمر كمتر ونيز صدمه رسيدن به مدارات مي گردد .

چون Led يك ديود مي باشد و بنا براين بايد به عنوان ديود در مدارات مورد استفاده قرار گيرد . و هيچ وقت ديود را در مدار به عنوان مصرف كننده در نظر نداشته باشيد . ونيز مي دانيم هيچ مداري بسته بدون مصرف كننده نيست .

نتيجه عرايضم اين است كه در يك مداربسته كه از Led استفاده مي كنيم حتماً مقاومت كنترل جريان را با حساب وكتاب درستي در نظر داشته باشيم . مصرف يك Led از 10 الي 20 ميلي آمپر است وبراي استفاده دائمي از يك Led در مدار مقاومت كنترل جريان آن را براساس اين مقدار مصرف محاسبه كنيم .
ونيز مي دانيم ولتاژ مورد نياز يك Led بستگي به رنگ نور آن از 7/1 الي 2/2 ولت متفاوت است البته خيلي راحت اين ولتاژ بدست مي آيد كافي است وقتي Led را در مدار قرار مي دهيم ( باسري نمودن مقاومت كنترل جريان آن ) مقدار ولتاژ دوسر Led را اندازه گيري نمائيم . تا ولتاژ مورد نياز Led بدست آيد .
از دو مطلب فوق نتيجه مي گيريم كه اولاً با يك پيل 5/1 ولتي انتظار روشن شدن Led را نداشته باشيم چون هر Led با يك ولتاژ مخصوص خود روشن مي شود .

ثانياً اگر مي خواهيم گرايش مستقيم يك Led را تست كنيم بايد ولتاژ اعمالي به Led بيشتر از 5/1 باشد و نيز مي دانيم كه مولتي مترها اكثراً مانند مولتي متر هيوكي 3007 براي تست در حالت اهمي از باطري 5/1 ولتي براي مُدهاي Rx1 و Rx100 و Rx1k استفاده مي كنند و اين ولتاژ نمي تواند يك ديود Led را روشن كند چون همچنانكه دربالاعنوان شد حداقل 7/1 ولت جهت شكستن سد پتانسيل Led لازم است .
بنا براين جهت تست در حالت حتي گرايش مستقيم يك Led بايد از مُد Rx10k كه تغذيه آن معمولاً توسط يك پيل 9 ولتي انجام مي گيرد استفاده نمود .
نتيجه نهايي :
تست Led : گرايش مستقيم : مولتي متر در مُد Rx10k و مولتيمتر بايد راه بدهد .
گرايش معكوس : مولتيمتر در همين مُد و هيچ گونه نشتي قابل قبول نيست .

تست Led فرستنده مادون قرمز :
گرايش مستقيم : مولتي متر در مُد Rx1 و مولتيمتر بايد راه بدهد .
گرايش معكوس : مولتيمتر در مُد Rx10k و هيچ گونه نشتي قابل قبول نيست .

-->

تست ديود 4


براي اينكه تست ديود به وسيله مولتي متر ديجيتال قابل فهم باشد بايد اندكي از ساختار ديود و نيمه هاديها صحبت كنيم .
ديود از پيوند دونيمه هادي به نام نيمه هادي نوع n ( اصطلاحاْ منفي ) و نيمه هادي نوع P ( مثبت ) تشكيل شده است .
سيلسيم و ژرمانيم و انديوم و... بعضي از عناصر كه در جدول مندليف تعيين شده اند جزو نيمه هاديها مي باشند. اين عناصر در طبيعت به صورت بلور كريستال در مي آيند و ساختمان ملوكوليشان كريستالي است يعني اتمهاي آين عناصر در كنار همديگر به صورت منظم طوري روي هم قرار گرفته اند كه هر اتم از آن با چهار اتم مجاور تشكيل يك توده كريستال را مي دهد.
و اگر اين نيمه هادي را خالص نمائيم درصفر درجه مطلق ( 273- ) درجه سانتي گراد عايق مي باشد .
ولي در دماي معمولي تعدادي از الكترونها از محيط انرژي مي گيرند واز هسته اتم دور شده به شكل الكترون آزاد درآمده و اندكي موجب عبورجريان الكتريسيته مي شوند .

نيمه هادي نوع n : بعد از خالص نمودن صدر صد سيلسيم ( يكي از عناصر طبيعت ) به منظور تهيه نيمه هادي نوع n عناصري پنج ظرفيتي ( مدار آخرشان داراي پنج الكترون مي باشد ) مانند ارسنيك و آنتي موان به صورت ناخالصي به سيليكون خالص وارد مي كنند مقدار اين ناخالصي بسيار اندك است اما هدايت نيمه هادي را خيلي بالا مي برد .
دليل هدايت بيشتر نيمه هادي ساخته شده را بايد در ساختمان اتمي كريستال جديد جستجو نمود زيرا هنگام وارد نمودن عناصر پنج ظرفيتي در كريستال سيليكون اتم وارد شده مجبور به طبعيت از ساختمان ملوكولي كريستال مي باشد و هراتم از اين عنصر به اجبار با چهار اتم سيلكون يك پيوند اشتراكي را ساخته مولوكول جديد ي را مي سازند كه يك الكترون آزاد توليد كرده است و در نتيجه هدايت نيمه هادي ( چون الكترون آزاد گرفته است ) بيشتر مي شود . اين نيمه هادي ساخته شده جديد همان نيمه هادي نوع n مي باشد .

نيمه هادي نوع p : براي ساخت نيمه هادي نوع p عناصر سه ظرفيتي مانند آلومينيوم و يا گاليم كه در مدار آخرشان سه الكترون دارند و جزو عناصر سه ظرفيتي مي باشند به صورت ناخالصي به كريستال سيليكون وارد نموده عنصر وارده جديد نيز مجبور به اطاعت از ساختمان كريستالي مي باشد . و هر اتم از عنصر جديد با چهار اتم سييكون تشكيل يك مولوكول جديد را مي دهد بنابر اين مدار آخر پيوند جديد به جاي هشت الكترون داراي هفت الكترون شده ويك جاي خالي براي الكترون هاي آزاد در پيون جديد درست مي شود كه به آن حفره گويند حفره نيز خاصيٌت هدايت بيشتر را به نيمه هادي جديد كه همان نيمه هادي نوع p است مي دهد .
ديود : براي ساخت يك ديود نيمه هادي نوع n را با نيمه هادي نوع p پيوند مي دهند در محل پيوند اتفاق جالبي پيش مي آيد كه قابل تامل است . و موجب يك طرفه نمودن جريان در ديود مي شود . جهت توضيح اين نكته به ادامه مطلب با توجه به شكل ارائه شده دقت فرمائيد .



همانطور كه ملاحظه مي شود در محل پيوند دونيمه هادي يك ناحيه اي به نام ناحيه تهي يا سد پتانسيل ايجاد مي شود كه به شكل يك پيل ظاهراْ با قطب مثبت در داخل نيمه هادي نوع N وقطب منفي آن در داخل نيمه هادي نوع P در آمده است.
ناحيه سد پتانسيل با ولتاژ 0.6 الي 0.7 ولت در جهت گرايش مستقيم از N به P شكسته شده و ديود جريان را از خود عبور مي دهد . بنا براين در صورتيكه مقدار ولتاژ تغذيه كمتر از 0.7 ولت باشد سد پتانسيل شكسته نشده و ديود جريان را ازخود عبور نمي دهد . و در صورتيكه مقدار ولتاژ تغذيه بيشتر از 0.7 باشد بديهي است كه سد پتانسيل را شكسته اما مقدار 7.0 ولت از تغذيه صرف باياس ديود شده واز تغذيه كم مي شود .

مطابق شكل زير :

بنا براين ولتاژ اعمال شده در صورتيكه از 0.7 بيشتر باشد از ديود عبور نموده و به اندازه 0.7 ولت روي ديود افت پيدا مي كند . مثلا ْ اگر ولتاژ اعمال شده به دوسر ديود 3 ولت باشد فقط 2.3 ولت آن روي مقاومت ظاهر مي شود .

واما در صورتيكه ديود در گرايش معكوس قرار گيرد سد پتانسيل ديود به اندازه ولتاژ تغذيه بالا رفته و اصلاْ ديود جرياني را از خود عبور نمي دهد .

نتيجه اصلي مطالب فوق اين است كه مولتي متر ديجيتال ديود را در گرايش مستقيم قرار داده و فقط ولتاژ باياس آن را نشان مي دهد . و بدين وسيله سلامت ديود تائيد مي شود .

شناسايي پايه هاي ترانزيستور




طريقه شناسايي پايه هاي ترانزيستور توسط مولتي متر آنا لوگ :

ابتدا مولتي متر را در رنج Rx1 قرار داده و سپس به دنبال پايه اي مي گرديم كه به دو پايه ي ديگر راه بدهد . اين پايه B ( بيس ) است
و اگر اين پايه به وسيله سيم قرمز شناسايي شود معرف نوع ترانزيستور Pnp ويا اصطلاحاً مثبت است .
و در صورتيكه توسط ترمينال مشكي تشخيص داده شود گويند كه ترانزيستورnpn و يا منفي است .
حال پايه B و نوع ترانزيستور مشخص شده است . جهت تشخيص دو پايه ي ديگر مولتي متر را در رنج Rx10k قرار داده و در هردو جهت اين دو پايه را نسبت به هم تست مي كنيم در جهتي كه مولتي متر راه مي دهد ترمينالي كه B ( بيس ) را شناسايي كرده است E ترانزيستور را تشخيص مي دهد . و طبعاً پايه بعدي كلكتور است .




 

پتانسیومتر :
سه پایه دارد . مقاومتی است که با پیچاندن دسته آن مقاومت بین پایه وسط و کنار تغییر می کند . تغییرات مقاومت پایه های کناری نسبت به هم قرینه است ؛ یعنی اگر مقاومت نسبت به سمت چپ کم شود , به همان میزان نسبت به سمت راست افزایش می یابد . مقاومت بین دو پایه کناری همواره ثابت است و به اندازه عدد نوشته شده روی پتانسیومتر بستگی دارد . عدد روی پتانسیومتر حداکثر  3  رقمی است . دو رقم سمت چپ را می نویسیم و به اندازه رقم سوم مقابل آن صفر می گذاریم . عدد به دست آمده میزان مقاومت بر حسب اهم را نشان می دهد. اگر رقم سومی وجود نداشت , همان عدد دورقمی , مقاومت کل پتانسیومتر را نشان می دهد . برای مثال اگر روی پتانسیومتر نوشته بود  224  یعنی مقاومت آن  220000  اهم است  ( 220  کیلواهم ) . اگر روی پتانسیومتر نوشته بود  56  یعنی مقاومت آن  56  اهم است.


 

ترانزیستور :


مبحث ترانزیستور بسیار گسترده است . در اینجا به توضیحات کلی درباره این قطعه اکتفا می کنیم . دارای سه پایه بیس و کلکتور و امیتر است . دو تیپ دارد . مثبت  (PNP) و منفی  (NPN) . در نوع مثبت به کلکتور ولتاژ منفی داده می شود و به امیتر مثبت . به پایه بیس هم که ورودی ترانزیستور تعبیر می شود پالس منفی داده می شود . در نوع منفی به کلکتور ولتاژ مثبت داده می شود و به امیتر منفی . به پایه بیس هم پالس مثبت داده می شود . کار ترانزیستور تقویت جریان است . اگر به بیس جریان ضعیفی داده شود ؛ مثلا  2  میلی آمپر و ضریب تقویت ( یا بتا یا  HFE ) تراتزیستور هم  300  باشد , جریانی که از کلکتور و امیتر می گذرد می تواند تا  600  میلی آمپر باشد . مصرف کننده معمولا سر راه کلکتور و گاهی سر راه امیتر قرار داده می شود . به عبارت دیگر , مصرف کننده ما می تواند تا  600  میلی آمپر , از منبع تغذیه جریان بکشد ؛ در صورتی که قبل از تقویت فقط می توانست حداکثر  2  میلی آمپر بکشد . جنس ترانزیستورها سیلیسیم یا ژرمانیم است . در ترانزیستورهای سیلیسیومی نباید ولتاژ اعمال شده به بیس کمتر از  ۷/۰  ( ۶/۰  تا  ۷/۰  ) ولت باشد ( جریان هر چقدر که می خواهد باشد ) . به این ولتاژ , ولتاژ شکست می گویند . در ترانزیستورهای ژرمانیومی نباید ولتاژ اعمال شده به بیس کمتر از  ۳/۰  ( ۲/۰  تا  ۳/۰  ) ولت باشد . ترانزیستور انواع دیگری مثل  UJT و  FET و ... دارد که به علت کاربرد محدود از توضیح درباره آنها صرفنظر کردیم 



 

فيوز معمولا از يك تيوب سراميكي تشكيل شده كه آلياژي از جنس نقره يا مس از وسط آن عبور مي كند و اطراف آن با كوارتز يا سيليس پر مي شود ،المان مركزي فيوز به گونه اي طراحي شده است كه اجازه عبور جريانهاي مجاز را مي دهد و به اين ترتيب فيوز از عبور جريانهاي اضافي و خطا جلوگيري مي كند.

اتصال كوتاه چيست؟

اتصال كوتاه خطايي است در يك وسيله الكتريكي كه در آن بار الكتريكي اجازه مي يابد تا بين يك فاز و زمين الكتريكي يا بين دو فاز جريان يابد. به عبارت غير فني تر، يك اتصال كوتاه هنگامي رخ ميدهد كه جريان الكتريسيته از يك مدار در جهتي ناخواسته، عموما به دليل يك اتصالي در جايي كه كسي انتظار ندارد، عبور كند.
ساده ترين راه براي ايجاد يك اتصال كوتاه متصل كردن سرهاي مثبت و منفي يك باتري توسط يك هادي كم مقاومت، مانند سيم، است. مقاومت كم موجب جريان زياد مي شود كه منجر به خروج انرژي زيادي از باتري در مدت كوتاه ميشود


رله

 

حفاظت تجهیزات و دستگاه های سیستم قدرت در مقابل عیوب و اتصالیها ، به وسیله كلید قدرت انجام می گیرد قبل از اینكه كلید قدرت بتواند باز شود ، سیم پیچی عمل كنندة آن باید تغذیه شود این تغذیه به وسیله رله های حفاظتی انجام می پذیرد . رله به دستگاهی گفته می شود كه در اثر تغییر كمیت الكتریكی مانند ولت و جریان و یا كمیت فیزیكی مثل درجه حرارت و حركت روغن ( در رله بوخهولس ) تحریك شده و باعث به كار افتادن دستگاههای دیگر و نهایتاً قطع مدار به وسیله كلید قدرت ( در سیستم تولید و انتقال و توزیع ) یا دژنكتور می گردد .


بنابراین به وسیله رله : · محل وقوع عیب از شبكه جدا سازی شده باعث می شود كه سایر قسمتهای سالم شبكه همچنان به كار خود
ادامه دهند و پایداری و ثبات شبكه به همان حالت قبلی محفوظ بماند .· تجهیزات و دستگاهها در مقابل عیوب و اتصالی ها محافظت شده و میزان خسارات وارده به آنها محدود گردد . سبب به وجود آمدن اتصالی ها و تأثیرات آنبه دو علت زیر اتصالی ها می توانند به وجود آیند : الف – تأثیرات داخلی تأثیرات داخلی كه باعث خراب شدن و از بین رفتن دستگاهها یا خطوط انتقال و توزیع می شود عبارتند از :فاسد شدن قسمتهای عایق در یك مولد ، ترانسفورماتور ، خط ، كابل و غیره . این ضایعات و امكانات مكن است مربوط به عمر عایق ، عدم تنظیم صحیح ، عدم ساخت صحیح و یا عدم نصب صحیح عایق باشد . ب – تأثیرات خارجیتأثیرات خارجی شامل تأثیرات زیادی است از آن جمله رعد و برق ، اضافه بار كه باعث به وجود آمدن حرارت شود ، برف و باران ، باد و طوفان ، شاخة درختها ، حیوانات و پرندگان ، سقوط اشیاء اشتباه در عملیات و خسارتهایی كه یه وسیله مردم وارد می شود و غیره . وقتی كه یك اتصالی در مداری رخ دهد ، جریان افزایش یافته و ولتاژ ( اختلاف پتانسیل ) نقصان پیدا می كند افزایش جریان حرارت زیادی را به وجود آورده كه ممكن است منجر به آتش سوزی یا انفجار شود . اگر اتصالی به صورت جرقه باشد ممكن است خسارت زیادی به بار آورد . برای مثال اگر جرقه ای بر روی خط انتقال نیرو به وجود آمده و سریعاً بر طرف نشود خط را سوزانده و باعث پاره شدن آن خواهد شد و نتیجه سبب قطع برق برای مدت طولانی خواهد شد . نقصان ولتاژ كه در اثر یك اتصالی به وجود آید می آید برای دستگاههای الكتریكی بسیار زیان آور است و اگر این ولتاژ ضعیف برای چند ثانیه ایی ادامه داشته باشد ، موتورهای مشتركین از كار باز ایستاده ، دوران مولدهای برق نامنظم و نا مرتب خواهد شد پس در صورت وقوع جریان شدید و ولتاژ ضعیف به سبب اتصالی در مدار می بایست به فوریت اتصالی كشف و برطرف گردد و جریان ولتاژ به حالت عادی باز گردانده شود.رله های جریانی : رله های جریانی به منظور حفاظت شبکه های الکتریکی در مقابل عیوب ناشی از خطاهای جریان بکار میروند . عمده عیوبی که توسط رله های جریانی تشخیص داده می شوند عبارت است از : þاتصال کوتاه در شبکهþاضافه جریان þاضافه بارþجریان نشتی (ارت فالت) þعدم تقارن جریان سه فازþکاهش بار ( در مورد موتورها)þافزایش مدت زمان راه اندازی (در مورد موتورها)þقفل بودن روتور (در مورد موتورها) حفاظت اتصال کوتاه و اضافه جریان و اتصالی زمین : اولین و یکی از مهمترین حفاظت هایی که در یک سیستم وجود دارد حفاظت اتصال کوتاه و اضافه جریان و نشتی زمین می باشد . این حفاظت ها با حفاظت اضافه بار تفاوت آشکاری دارد چون حفاظت اضافه بار بر اساس ظرفیت حرارتی واحد می باشند . در این نوع حفاظت جریان سه فاز توسط سه عدد ترانسفورمر جریان حس می گردند و به رله انتقال می یابند و بر اساس آن حفاظت صورت می گیرد . در مورد حفاظت فوق منحنی قطع رله از اهمیت بسیار زیادی برخوردار است زیرا حفاظت صحیح بر اساس آن صورت میگیرد .این رله ها می توانند دارای دو گروه منحنی قطع باشند :þ نوع زمان ثابت که پارامتر جریان و زمان به هم وابستگی ندارند و به صورت جداگانه تنظیم می گردند و رله بر اساس جریان تنظیمی در زمان تنظیم شده فرمان قطع را صادر می کنند .þ نوع زمان کاهشی که در این حالت زمان قطع رله با یک منحنی به جریان عبوری از رله مرتبط می باشد . به این صورت که هر چه جریان عبوری از رله بیشتر گردد زمان قطع رله کمتر خواهد بود .بسته به عملکرد و نوع استفاده از رله منحنی های استانداردی برای این رله ها تعریف می گردد که بشرح زیر است : Standard Inverse Curve (SIT)Very Inverse Curve (VIT)Extremely Inverse Curve (EIT)Ultra Inverse Curve (UIT) حفاظت سیستم های الکتریکی از اهمیت بسیار زیادی برخوردار است و امروزه کمپانی های متعددی در حال طراحی و ساخت رله های حفاظتی می باشند . برخی از کمپانی های معتبر که در این زمینه مشغول به فعالیت می باشند را معرفی می کنیم.Siemens , Alstom , ABB , GE Power , Schneider , CEE , Reyroll به طور کلی رله های حفاظتی باید دارای مشخصات زیر باشند : þسرعت عملکرد : این پارامتر در رله های حفاظتی بسیار حائز اهمیت است چون رله های حفاظتی هنگام خطا موظفند با سرعت هرچه تمامتر بخش های معیوب را از قسمت های سالم جدا نمایند . þحساسیت : این پارامتر به حداقل جریانی که سبب قطع رله می گردد بر میگردد .þتشخیص و انتخاب در شرایط خطا : این پارامتر نیز بسیار مهم است زیرا در شبکه هایی که دارای چند باس بار و رله حفاظتی هستند هنگام وقوع خطا می باید قسمت معیوب به درستی تشخیص داده شده و از شبکه جدا گردد و قسمتهای سالم به کار خود ادامه دهد.þپایداری : این پارامتر به این باز میگردد که یک رله حفاظتی به تمامی خطاهایی که در محدوده حفاظتی خود به درستی عکس العمل نشان دهد و در مقابل خطاهای این محدوده عکس العملی نشان ندهد . دسته بندی رله های حفاظتی بر اساس پارامترهای اندازه گیری : الف) رله های جریانی : این رله ها بر اساس میزان جریان ورودی به رله عمل می کند . حال این جریان می تواند جریان فازها , جریان سیم نول , مجموع جبری جریانهای فازها باشد (رله های جریان زیاد – رله های ارت فالت و .... ) و جریان ورودی رله می تواند تفاضل دو یا چند جریان باشد ( رله های دیفرانسیل و رستریکت ارت فالت ) ب) رله های ولتاژی : این رله ها بر اساس ولتاژ ورودی به رله عمل میکند این ولتاژ می تواند ولتاژ فازها باشد (رله های اضافه یا کمبود ولتاژ و ....) و یا میتواند مجموع جبری چند ولتاژ باشد ( رله تغییر مکان نقطه تلاقی بردارهای سه فاز) ج) رله های فرکانسی : این رله ها بر اساس فرکانس ولتاژ ورودی عمل میکند ( رله های افزایش و کمبود فرکانس) د) رله های توانی : این رله ها بر اساس توان عمل می کنند به عنوان مثال رله هایی که جهت توان را اندازه گیری می کنند یا رله هایی که توان اکتیو و راکتیو را اندازه گیری می کنند . ه) رله های جهتی : این رله ها از جنس رله های توانی هستند که بر اساس زاویه بین بردارهای ولتاژ و جریان عمل میکنند مانند رله های اضافه جریان جهتی که در خطوط چند سو تغذیه رینگ و پارالل بکار می روند و یا رله های جهت توان که جهت پرهیز از موتوری شدن ژنراتور هنگام قطع کوپلینگ آن بکار میرود . و) رله های امپدانسی : مانند رله های دیستانس که در خطوط انتقال کاربرد فراوانی دارند . ز) رله های وابسته به کمیت های فیزیکی : مانند حرارت – فشار – سطح مایعات و .... مانند رله بوخ هلتس ترانسفورمرها

ح) رله های خاص : رله هایی هستند که برای منظورهای خاص به کار میروند مثلا رله تشخیص خطای بریکر – رله مونیتورینگ مدار تریپ بریکر – رله لاک اوت و .....


IC

حروف اختصاری IC از دو کلمه انگلیسی integrated circuit به معنی مدار مجتمع گرفته شده است. پیش از اخترا ع IC ،مدارهای الکترونیکی ازتعداد زیادی قطعه یا المان الکتریکی تشکیل می*شدند. این مدارات فضای زیادی را اشغال می*کردند و توان الکتریکی بالایی نیز مصرف می*کردند. و این، امکان بوجود آمدن نقص و عیب در مدار را افزایش می*داد. همچنین سرعت پایینی هم داشتند. IC ، تعداد زیادی عناصر الکتریکی را که بیشتر آنها ترانزیستور هستند، در یک فضای کوچک درون خود جای داده است و همین پدیده است که باعث شده امروزه دستگاه*های الکترونیکی کاربرد چشمگیری در همه جا و در همه زمینه*ها داشته باشند.



آیا تا کنون کلمه مدارات مجتمع را شننیده اید؟ آیا هیچ آگاهی در مورد آن دارید؟ در این پست اطلاعاتی در این رابطه به شما عزیزان ارائه خواهیم داد.

مدار های دیجیتال با مدارهای مجتمع ساخته می شوند. یک مدار مجتمع ( یا آی سی ) یک کریستال کوچک نیمه هادی به نام تراشه است. که قطعات الکترونیکی را برای گیت های دیجیتال در خود دارد. اتصالات داخل تراشه مدار مورد نیاز را به وجود می آورند. تراشه در داخل یک محفظه پلاستیک و یا سرامیک جاسازی می شود. و اتصالات آن با سیم های طلایی نازک به پایه های خارجی جوش داده می شود تا مدارات مجتمع به وجود آیند.

تعداد پایه ها ممکن است از 14 پایه در بسته های کوچک تا 100 پایه یا بیشتر در بسته های بزرگتر تغییر کند. هر مدار مشترک یا آی سی دارای یک مشخصه عددی ست که روی سطح بسته بندی آن برای شناسایی چاپ میشود. هر سازنده یک کتابچه راهنما یا کاتالوگ با شرح دقیق و تمام اطلاعات لازم در باره آی سی های ساخت خود را چاپ می کند.



باپیشرفت تکنولوژی مدار های مجتمع تعداد گیت هایی که می تووانست در یک تراشه جای گیرد به میزان قابل توجه ای افزایش یافت. تراشه هایی که دارای چند گیت داخلی بودند و آن دسته که چند صد گیت دارا بودند در بسته هایی با ظرفیت یا مقیاس کوچک متوسط یا بزرک جای داده شده اند.

مدار های مجتمع با مقیاس کوچک (ssi) دارای چند گیت مستقل در یک بسته واحد هستند. ورودی ها و خروجی های گیت ها مستقیما به پایه های بسته متصل اند. تعداد گیت ها معمولا کمتر از 10 و محدود به تعداد پایه ها در آی سی می باشند.

قطعات مجتمع با مقیاس متوسط (msi) دارای تقریبا 10 الی 200 گیت در هر بسته می باشند. این وسیله ها معمولا توابع دیجیتال ساده همچون دیکدر ها - جمع کننده ها و ثبات ها را اجرا می نمایند.

مدار ها یا وسایل مجتمع با مقیاس بزرگ (lsi) بین 200 تا چند هزار گیت در هر بسته دارند. این بسته ها سیستم های دیجیتالی همچون پردازنده ها- تراشه های حافظه و ماژول های قابل بر نامه ریزی را شامل می شوند.

قطعات مجتمع با مقیاس بسیار بزرگ (vlsi) حاوی هزاران گیت در یک بسته اند. مثال هایی از این گروه عبارتند از آرایه های بزرگ حافظه/ تراشه های پیچیده ریز کامپیو تر ها. Vlsi ها به دلیل کوچکی و ارزانی انقلابی در تکنولوژی ساجت سیستم ها کامپیو تری به وجود آورده و به طراحان امکان ساخت و ایجاد ساختار هایی را دادند که قبلا اقتصادی نبودند.



مدار های مجتمع نه تنها بر اساس عملکرد منطقی شان طبقه بندی می شوند بلکه از نظر تکنولوژی خاص مدار هایی که به آن تعلق دارند نیز دسته بندی می گردند. تکنولوژی به کار رفته در مدار را خانواده منطقی دیجیتال می خوانند. هر خانواده منطقی مدار الکترونیکی پایه خاصی را داراست که مدار ها و و توابع دیجیتال پیچیده تر بر اساس آن تهیه می شوند.

مدار پایه در هر تکنولوژی یک گیت Nand/nor و یا معکوس کننده است.

در نام گذاری تکنولوژی ار قطعات الکترونیکی به کار رفته در ساخت مدار پایه معمولا استفاده می شود. بسیاری از خانواده های مختلف منطقی به صورت مدار های مجنمع در سطح تجاری عرضه شده اند. متداول ترین خانواده ها در زیر معرفی شده اند:

Ttl-منطق ترانزیستور -ترانزیستور

Ecl-منطق کوپل امیتر

Mos-منطق فلز- اکسید- نیمه هادی

Cmos-منطق فلز - اکسید - نیمه هادی




OPAMP

تقويت كننده هاي عملياتي، تقويت كننده هاي كوپل مستقيم بوده، كه داراي گين

(Gian) خيلي زيادي مي باشند. كه مقدار اين گين را با كمك

مقاومت فيدبك مي توان كنترل نمود. اين تقويت كننده ها اكثراً در مدارات خطي بكار مي

روند و اغلب در مدارات غيرخطي نيز از آنها استفاده مي شود. يك تقويت كننده عملياتي

ايده آل بايستي شرايط زير را دارا باشد.



1) مقاومت ورودي آن بي نهايت باشد (Ri= ∞).

2) مقاومت خروجي آن صفر باشد (Ro= O).

3) گين ولتاژ حلقه باز آن بي نهايت باشد (Av= -∞).

4) عرض باند آن بي نهايت باشد (BW= ∞).

5) هنگامي كه اختلاف ولتاژ در ورودي صفر است، ولتاژ خروجي نيز صفر باشد.

6) منحني مشخصه آن با درجه حرارت تغيير نكند.

تقويت كننده هاي عملياتي اكثراً بصورت مدار مجتمع ساخته مي شوند.

اتصالات تغذيه تقويت كننده هاي عملياتي


تغذیه دوبل

براي استفاده از رنج كامل تقويت كننده هاي عملياتي، بايستي اين تقويت كننده ها با دو منبع تغذيه با ياس شوند، كه اين عمل معمولاً با استفاده از دو منبع تغذيه مجزا صورت مي گيرد. ولتاژ منبع اول نسبت به زمين (GND) برابر +VBB بوده در حاليكه ولتاژ منبع دوم نسبت به زمين برابر –VBB مي باشد كه غالباً مقدار اين ولتاژها +15 ولت و -15 ولت انتخاب مي شود.

معمولاً تقويت كننده هاي عملياتي جهت تغذيه دو پايه دارند، چون زمين به تقويت كننده عملياتي وصل نمي شود و فقط ولتاژهاي +VBB و –VBB به تقويت كننده عملياتي متصل مي شود. ولي با وجود اين تمام اتصالاتي كه بايستي زمين (GND) شوند، به نقطه بين دو منبع تغذيه زمين وصل مي گردند.

همچنين هر تقويت كننده عملياتي دو ورودي دارد؛ يكي ورودي مثبت كه با V+ و ديگري ورودي منفي كه با V

تقویت کننده های عملیاتی


تقویت کننده های عملیاتی به اختصار آپ امپ نامیده می شو ند.و به صورت مدار مجتمع در دسترس می باشند.این تقویت کننده ها از پایداری بالایی برخوردارند.، و با اتصال ترکیب مناسبی از عناصر خارجی مثل مقاومت،خازن،دیود و غیره به آنها،می توان انواع عملیات خطی و غیر خطی را انجام داد.





از ویژگیهای اختصاصی تقویت کننده های عملیا تی ورودی تفاضلی و بهره بسیار زیاد است.



این المان الکترونیکی اختلاف میان ولتاژهای ورودی در پای های مثبت و منفی را در خروجی با تقویت بسیار با لایی آشکار می سازد.حتی اگر این اختلاف ولتاژ کوچک نیز باشد.،آنرا به سطح قابل قبولی از ولتاژ* در خروجی تبدیل می کند.به شکل مداری این المان در زیر توجه کنید.



این المان همواره دارای دو پایه مثبت و منفی در ورودی،این دو پایه ورودی مستلزم یک پایه در خروجی هستند.

پایه ورودی مثبت را در اصطلاح لاتین noninverting و پایه منفی را inverting می گویند.







نحوه عملکرد op_amp



این المان بسته به وضعیت پایه های ورودی و خروجی دارای شرایط و عملکرد متفاوتی خواهد شد که در زیر به توضیح راجب این وضعیت ها می پردازیم.





اگر inverting > noninverting باشد.خروجی به سمت منفی VSS اشباع می شود.منظور از منفی VSS مقدار منفی ولتاژ تغذیه آیسی است. مثلا اگر ولتاژ ورودی 5 ولت باشد و ورودی پایه منفی دارای ولتاژی بزرگتر از ورودی پایه مثبت باشد.خروجی به سمت منفی 5 ولت به اشباع می رود.





اگر inverting < noninverting باشد.خروجی به سمت مثبت VSS اشباع می شود.مثلا اگر تغذیه آیسی 5 ولت باشد.و ورودی پایه مثبت دارای ولتاژی بزرگتر از پایه منفی باشد.خروجی به سمت مثبت 5 ولت به اشباع می رود.به شکل توجه کنید این شکل گویای همه مطالب است.همانطور که مشاهده می کنید.،هر جا که اختلاف ولتاژ ورودی مثبت باشد.خروجی به اشباع مثبت VSS می رود.و همچنین هر جا که اختلاف ولتاژ ورودی منف با شد خروجی به منفی VSS می رود.

منظور از اختلاف ولتاژ ،اختلاف بین ورودی مثبت از منفی است.



بدون قرار دادن فیدبک از خروجی به ورودی، ماکزیمم اشباع در خروجی با کمترین اختلاف ولتاژ* در پایه های مثبت و منفی ورودی بوجود می آید.در این حالت مدار شما بسیار نویز پذیر است.



در حالت ایده آل منظور حالت غیر عملی است.،در این حالت op-amp ها دارای مقاومت ورودی بی نهایت تقویت سیگنال ورودی در خروجی به صورت بی نهایت و مقاومت خروجی صفر هستند.



در حالت واقعی گین یا تقویت بین ولتاژ های مثبت و منفی ورودی محدود می شود.



بین پایه های ورودی و خروجی آپ امپ جریانی وجود ندارد.و این تنها ولتاژ ورودی است که خروجی را کنترل می کند.





استفاده از فیدبک در آپ امپ





با استفاده از فیدبک می توانید میزان تقویت ولتاژ های ورودی در خروجی را تعیین کنید.فیدبک می تواند.،از خروجی به هر یک از پایه های مثبت و منفی صورت گیرد.در آپ امپ اغلب فیدبک از خروجی به پایه منفی صورت می گیرد این نوع فیدبک را فیدبک منفی یا negative feedback می نامند.

با استفاده از فرمول زیر می توانید. میزان تقویت یا گین(gain) را در این نوع از فیدبک به راحتی محاسبه کنید.



در فرمول فوق Rf همان مقاومت فیدبک است.که در شکل زیر با نام R2 و از خروجی به پایه منفی ورودی زده شده است.منظور از Rin نیز مقاومت ورودی است.،که در شکل زیر با نام R1 می باشد.



بنابر فرمول فوق اگر Rf برابر صفر باشد دیگر تقو یتی وجود ندارد.،و GAIN برابر یک می شود.در این حالت ولتاژ خروجی برابر ولتاژ *ورودی است.در این وضعیت آپ امپ تنها به صورت یک بافر مجزا کننده یا ISOLATE کننده جریان ورودی از خروجی عمل می کند.شکل زیر نشان می دهد چگونه خروجی بدون استفاده از مقاومت به پایه منفی ورودی فیدبک زده شده است.









آپ امپ در حالت مقایسه گری یا Comparator



در این حالت کوچکترین اختلاف بین ولتاژ های ورودی تقویت شده و در خروجی نمایان می شود.

در این وضعیت خروجی زمانی high یا سوییچ می شود.که مقدار ولتاژ* در پایه inverting یا منفی به سطح ولتاژ* در پایه noninverting یا مثبت برسد.این ولتاژ در شکل زیر برابر vref است.

از این نوع مدار جهت مقایسه ولتاژ های ورودی به خصوص در سنسورها استفاده می شود.

در این مدار به جای مقاومت R2 می توانید از پتانسیومتر جهت تعیین ولتاژ* Vref و تنظیم آن به صورت دلخواه استفاده کنید.









تقویت کننده مستقیم (noninverting amplifier)





در این حالت ورودی منفی یا inverting توسط مقاومت R1 زمین می شو د.و فیدک نیز از خروجی توسط مقاومت R2 به ورودی منفی فیدبک داده می شود.در این حالت خروجی کاملا هم فاز با ورودی خواهد بود.







تغذیه Op-Amp



در بعضی موارد Op-Amp ها نیاز به دو منبع تغذیه مثبت و منفی دارند.

اگر ما مایل باشیم که تنها از خروجی مثبت آپ امپ استفاده کنیم.در واقع منظور ولتاژ های مثبت در خروجی است.در این حالت می بایست منفی Vss را به زمین متصل کنیم.ولتاژ* مثبت را تنها به پایه تغذیه مثبت وصل کنیم.

در این حالت شما بایستی از دو باطری یا از یک منبع تغذیه دوتایی مثبت و منفی استفاده کنید.

در لینک زیر می توانید.یک مدار ساده تغذیه دوبل را تجربه کنید.

تغذیه دوبل 5 ولت



نکاتی راجب به Op-Amp



هیچگاه تغذیه مثبت و منفی آپ و امپ را به صورت معکوس وصل نکنید.،با این کار Op-Amp خواهد سوخت.

تغذیه ورودی های مثبت و منفی می بایست.از مقادیر ورودی در پایه های inverting و noninverting بیشتر باشد.سیگنال های ورودی و خروجی را توسط خازنهای 1.0ufتا 0.1uf زمین کنید تا از تاثیر نویز در مدار خود جلوگیری کنید.



در حالت ایده آل آپ امپ ها دارای مقاومت ورودی بالا و در نتیجه جریان ورودی در حد صفر و مقاومت خروجی صفر می باشند.همچنین در این حالت ولتاژ* در ورودی های مثبت و منفی با یکدیگر مساوی هستند.




منبع: http://irew.blogfa.com/






+ نوشته شـــده در جمعه بیست و پنجم آذر 1390ساعــت10:44 تــوسط جواد كريم قاسمي |